
Creating a Pipeline

by Flavio Tordini

A pipeline is made of a set of connected filters and attributes. Pipelines are defined by means
of an XML document conforming to the Pipeline Schema. The XML file must be named
pipeline.xml in a task directory (example:
$XFP_HOME/tasks/myTask/pipeline.xml). Filters must be correctly connected,
input and output data types must match. If a filter output type implements the
java.util.Iterator interface, children filters will be executed for each element in the
iterator. You may use existing filters or create new ones from scratch.

Here's a simple example. This pipeline gets the XFP homepage via HTTP and stores it on a
local file.

<pipeline name="httpTest">
<filter name="httpGet" class="org.xfp.filters.HTTPGet">
<property name="url">http://xfp.sourceforge.net</property>
<filter name="fileWriter" class="org.xfp.filters.convert.FileWriter">
<property name="filename">myfile.html</property>

</filter>
</filter>

</pipeline>

In this example filter httpGet will be invoked with no input and its output will be passed
to filter fileWriter. For more examples take a look at $XFP_HOME/samples.

1. Filters

A filter is made of an input, an output and set of custom properties. A filter can contain 0 or
more children filters accepting as input type the output type of the parent filter. Children
filters process the output of the parent filter. A filter can support many input data types, but
will always output data of the same type.

2. Attributes

An attribute is any stateful object used by filters to accomplish a specific task. For example
attributes maybe used to hold the stateful information such as an FTP session or JavaMail
session, or an instance of a heavyweight business object. Attributes may be placed at three
different scope levels:

Page 1
Copyright © 2003-2004 The XFP Team. All rights reserved.

../xsd/pipeline-1.0.xsd
api/org/xfp/Filter.html
http://xfp.sourceforge.netdocumentation/developing.html

• Global level. Attributes defined in $XFP_HOME/conf/engine.xml are global to all the
pipelines. They are initialized at initialization time and disposed when XFP is stopped.

• Pipeline level. These attributes have a pipeline scope, they are only visible to the filters
of a specific pipeline. They are initialized each time a pipeline is executed and disposed
when the pipeline completes.

• Filter level. These attributes are visible only to a single filter. They are initialized just
before filter a execution and disposed just after the filter produced its output.

Here's an example of attribute usage:

<attribute name="ftpClient" class="org.xfp.components.FTPClientComponent">
<property name="server">&ftp.host;</property>
<property name="userid">&ftp.user;</property>
<property name="password">&ftp.password;</property>
<property name="remotedir">&ftp.remotedir;</property>

</attribute>

3. Setting properties

Properties are used to parameterize the behaviour of a filter. Use the property tag to set
filter properties. XFP uses internally the Jakarta Commons BeanUtils package to pass the
property values to filters.

The general set of possible property types supported by a JavaBean can be broken into three
categories -- some of which are supported by the standard JavaBeans specification, and some
of which are uniquely supported by the BeanUtils package:

• Simple - Simple, or scalar, properties have a single value that may be retrieved or
modified. The underlying property type might be a Java language primitive (such as int,
a simple object (such as a java.lang.String), or a more complex object whose
class is defined either by the Java language, by the application, or by a class library
included with the application.
<property name="myProperty">myValue</property>

• Indexed - An indexed property stores an ordered collection of objects (all of the same
type) that can be individually accessed by an integer-valued, non-negative index (or
subscript). Alternatively, the entire set of values may be set or retrieved using an array.
As an extension to the JavaBeans specification, the BeanUtils package considers any
property whose underlying data type is java.util.List (or an implementation of
List) to be indexed as well.
<property name="myProperty[index]">myValue</property>

• Mapped - As an extension to standard JavaBeans APIs, the BeanUtils package considers
any property whose underlying value is a java.util.Map to be "mapped". You can
set and retrieve individual values via a String-valued key.
<property name="myProperty(key)">myValue</property>

See BeanUtils Documentation for more info.

Creating a Pipeline

Page 2
Copyright © 2003-2004 The XFP Team. All rights reserved.

http://jakarta.apache.org/commons/beanutils/api/org/apache/commons/beanutils/package-summary.html#package_description

4. ${} expressions

Ant-style ${} expressions can be used in the value of filter properties. This is done by
placing the variable name between "${" and "}" in the property value. The expression can be
the name of a processed filter, the name of an attribute or the name of a system property. For
example, if there is a "dir" variable with the value "mydir", then this could be used in an
property like this: ${dir}/classes. This is resolved at run-time as mydir/classes.
<property name="myProperty">${dir}/classes</property>

There are some default variables bound the filter execution context:

name value

xfp.task.home Home directory of the task.

null A null pointer.

5. Overriding filter input

By default the filter input is the output of the parent filter. This can be overridden by using
the input attribute.
<filter name="myFilter" class="org.myFilter" input="${otherfilter}">

6. Overriding filter output type

Some general purpose filters may output generic data types such as java.lang.Object.
To cast the output type to the actual data type use the outputType attribute.
<filter name="myFilter" class="org.MyFilter" outputType="java.lang.String">

7. Error handling

In XFP you cannot really handle errors, but you can specify how the pipeline execution is
affected by an exception on a filter basis. The filter tag supports the onError attribute.
There are two fixed values for this attribute:

value description

exit This is the default value. If an exception occurs
pipeline execution is halted.

break If an exception occurs breaks branch execution
by skipping all nested filters and the pipeline
execution jumps to the next filter branch (i.e. to
the next sibling filter, if any).

<filter name="myFilter" class="org.MyFilter" onError="break">

Creating a Pipeline

Page 3
Copyright © 2003-2004 The XFP Team. All rights reserved.

But what if an exception occurs during an iteration? Should we break the loop or continue
with the next element? There's another attribute in the filter tag: onLoopError. There
are two fixed values for this attribute:

value description

continue This is the default value. If an exception occurs
continue with the next iteration (similar to the
java continue keyword).

break If an exception occurs breaks the loop (similar to
the java break keyword).

<filter name="myFilter" class="org.MyFilter" onLoopError="break">

Note:
Note that onLoopError does not override onError.

Creating a Pipeline

Page 4
Copyright © 2003-2004 The XFP Team. All rights reserved.

	1 Filters
	2 Attributes
	3 Setting properties
	4 ${} expressions
	5 Overriding filter input
	6 Overriding filter output type
	7 Error handling

