Developing with XFP

by Flavio Tordini

1. Writing Your Own Filter

It is very easy to write your own filter:

Create a Java class that extendsor g. xfp. Fil ter.

public class M/Filter extends Filter {

}

For each property, write a setter method. The setter method must be a public void method
that takes a single argument. The name of the method must begin with set , followed by
the property name, with the first character of the name in uppercase, and therest in
lowercase. That is, to support an property named t ype you create amethod set Type.
Depending on the type of the argument, XFP will perform some conversions for you
(refer to the BeanUtils documentation).

/**
* Sets my property.
* @aramtype The property to set
* @fp.property.required
*/

public void set MyProperty(String myProperty) ({
this. myProperty = myProperty;

}
Properties can also be mapped, i.e. bein akey/value format:

/**

* Sets ny nmapped property.
* @aram propertyname Nanme of the property to set
* @aram propertyval ue Val ue for the property
*/
public void set MyMappedProperty(java.lang. Stri ng propertynane, bject propertyval ue)
t hi s. myMappedProperti es. put (propertynanme, propertyval ue);

}

Optionally, writeapublicvoidi ni ti al i ze method, with no arguments. Use this
method to initialize any resource used by the filter. This method will be called after
property values have been setted.

/**

Page 1

Developing with XFP

* @ee org.xfp.Filter#initialize()
*/

public void initialize() throws Exception {
/1 your |ogic here
}

Write one or more public execut e methods returning any type (but primitives) or void,
with one or zero arguments (of any type but primitives), that throws Exception. These
methods implement the filter itself. The type of the method argument is the input data
type, while the returned type is the output type. If an execut e method has no argument,
the filter will not use any input data (we may call it a Source). Thiskind of filter is
suitable to be aroot filter. If the method returns void, the filter will have no output (a
Snk). Such afilter will dways be aleaf in thefilter tree. All methods must return the
same type.

/**
* Execute this filter
* @eturn The filter output.
*/
public MyQut put Type execute() throws Exception {
/1 your |ogic here
}

Because of its variable signature, the execut e method is not declared in or g. sour cef orge. xfp. Fil ter.ltis
discovered at runtime using Java reflection. For this reason the compiler will not throw any error if you do not declare any
execut e method, but XFP will.

Write apublic void r eset method, with no arguments. Use this method to reset any
property to its default value.

/**
* @ee org.xfp.Filter#reset()
*/
public void reset() {
nyProperty = nul |;
nmyMappedPr operties. cl ear () ;

Y ou can create filters that accept multiple input types by overloading the execut e method.
Try supporting as much data types as possible, so that users can easily chain filters with
matching data types.

If afilter execut e method returns null, children filter will not be executed.

Seeorg. xfp.filters.* for somerea-world implementations.

2. Writing Your Own Component

Page 2

Developing with XFP

XFP uses a subset of the Avalon Framework in order to manage the attribute lifecycle.
However, the support of the Avalon Framework is not complete.

« Create aJavaclass that optionally implements one or more of the following interfaces:
* org.apache. aval on. framewor k. par anet ers. Par anet eri zabl e
 org.apache. aval on. framework. activity.Initializable
 org.apache. aval on. framework. activity. Startabl e
 org.apache. aval on. franewor k. activity. Di sposabl e

Seeor g. xf p. conponent s. * for some concrete examples.

Page 3

	1 Writing Your Own Filter
	2 Writing Your Own Component

